Academic Course Description

BHARATH UNIVERSITY Faculty of Engineering and Technology Department of Electronics and Communication Engineering

BEI601- Control Systems

Sixth Semester, 2016-17 (even Semester)

Course (catalog) description

System modeling, simulation, analysis and controller design. Differential equations, transfer function representation, block diagrams and signal flows. System dynamic properties in time and frequency domains, performance specifications. Stability analysis: Routh-Hurwitz criterion, Root Locus method, Bode gain and phase margins, Nyquist criterion. Bode plot and polar plot, Classical controller design in time and frequency domain: lead, lag, lead-lag compensation, rate feedback, PID controller.

Compulsory/Elective course : Compulsory for ECE students

Credit & contact hours : 4 & 60

Course Coordinator : Ms.B.Kalaiselvi, Asst. Professor.

:

Instructor(s)

Name of the instructor	Class handling	Office location	Office phone	Email (domain: @bharathuniv.ac.in)	Consultation
Ms.B.Kalaiselvi	Third year ECE	SA006			9.00-9.50 AM
Mr.R.Mohanraj	Third year ECE	SA006		mohanraj.ece @bharathuniv.ac.in	12.45-1.15 PM

Relationship to other courses

Pre-requisites	:	Signals & Systems, Electronics and Instrumentation
Assumed knowledge	:	The students will have a physics and mathematics background obtained at a high School (or equivalent) level. In particular, working knowledge of basic mathematics Including differentiation, integration and probability theories are assumed.
Following courses	:	Nil

12 HOURS

Syllabus Contents

UNIT 1 CONTROL SYSTEM MODELLING

System concept. Differential equations. Transfer functions. Introduction to model based design-Modelling of electric systems, Translational and rotational mechanical systems, simple Electro - mechanical systems. Block diagram representation of systems. Block Diagram reduction methods. Closed loop transfer function, determination of Signal flow graphs. Mason's gain formula. Examples.Need for modulation, Amplitude Modulation System, Single Tone & Multiple Tone Amplitude Modulation, Power Relation, Generation of Amplitude Modulation – Linear Modulation – Collector Modulation method Non-linear Modulation – Square law Modulator, Product Modulator, Switching Modulator - Demodulation of Amplitude Modulation – Envelope Detector, Coherent Detector, VSB, Performance comparison of various Amplitude Modulation System.

UNIT 2 TIME RESPONSE ANALYSIS

UNIT 3 STABILITY IN TIME DOMAIN

First Order Systems. Impulse and Step Response analysis. Second Order system Analysis. Steady state error. Error Coefficients and Generalized error series. Principle of PI, PD and PID Compensation. Servo Motor, Synchros & Stepper Motor-analysis using Matlab.

Stability Analysis. Routh - Hurwitz Criterion. Root locus Method. Construction of root, locus diagrams. Stability Study. Application of root locus diagram-analysis using Matlab.

UNIT 4 STABILITY IN FREQUENCY DOMAIN

Frequency response analysis. Frequency domain specifications . Polar plot, Bode's Plot, Magnitude - Phase plot, Constant M and N Circles. Nichol's Chart Nyquist Stability Criterion. Relative Stability - gain Margin and Phase margin, determination from Polar plot, Bode's Plot and Magnitude – Phase Plot. Use of Nichol's Chart in system analysis to determine relative stability, Bandwidth, Resonance peak and resonance frequency- Analysis using Matlab.

UNIT 5 COMPENSATION TECHNIQUES

Cascade and feedback compensation. Lag, Lead and Lag- lead Compensation. Design of Cascade Compensators - Using Bode's Plot.

Text book(s) and/or required materials

TEXT BOOKS

T1. J.Nagrath and M.Gopal, "Control System Engineering", New Age International Publishers,5thEdition,2007.

REFERENCES

R1. Benjamin.C.Kuo, "Automatic control systems", Prentice Hall of India, 7thEdition, 1995.

R2.M.Gopal, "Control System–Principles and Design", TataMcGrawHill, 2ndEdition, 2002.

R3. Schaum"sOutlineSeries, "FeedbackandControlSystems" Tata McGraw-Hill, 2007.

R4. John J.D"Azzo & ConstantineH. Houpis, "LinearControl System Analysisand Design", Tata McGraw-Hill, Inc., 1995. R5. www.electrical4u.com

Computer usage: Nil

Professional component

General	-	0%
Basic Sciences	-	0%
Engineering sciences & Technical arts	-	0%
Professional subject	-	100%

Broad area : | Signal Processing | Electronics | Embedded

Test Schedule

S. No.	Test	Tentative Date	Portions	Duration
1	Cycle Test-1	February 2 nd week	Session 1 to 20	2 Periods
2	Cycle Test-2	March 2 nd week	Session 21 to40	2 Periods
3	Model Test	April 2 nd week	Session 1 to 60	3 Hrs
4	University Examination	ТВА	All sessions / Units	3 Hrs.

12 HOURS

12 HOURS

12 HOURS

TOTAL 60 HOURS

12 HOURS

Mapping of Instructional Objectives with Program Outcome

To study control problem, control system dynamics and feedback principles. To study time resp	oonse C	Correlates to		
		conclutes to		
of first and second order systems and basic state variable analysis and to do simple problems. To stuc	ly the	program		
concept of stability and criteria for stability and to do simple problems. To study the frequency response		outcome		
through polar plots and Bode plots and Nyquist stability criteria and to do simple problems.	н	М	L	
1. Outline the development of mathematical models to represent systems and their representation	ion a	f,I,j	g	
by transfer functions				
2. Discuss the transient and steady state response of control systems	С	a,e,d	i	
3. Practice frequency domain plots (Bode and Polar)	d	а	h	
4. Analyze performance of control systems	e,j	a,e,g	i	
5. Design compensation networks.	а	i	b	
6. Design the different types of compensators	f			

H: high correlation, M: medium correlation, L: low correlation

Draft Lecture Schedule

Session	Topics	Problem Solving (Yes/No)	Text/Chapter
UNIT I	CONTROL SYSTEM MODELLING	•	
1.	System Concept	No	
2.	Differential equations	Yes	
3.	Transfer functions.	Yes	
4.	Modelling of electric systems,	Yes	[T1] Chapter -1,
5.	Translational mechanical systems	Yes	[R1]Chapter-2,3
6.	Rotational mechanical systems	Yes	
7.	simple Electro - mechanical systems.	Yes	
8.	Block diagram representation of systems	Yes	
9.	Block Diagram reduction methods	Yes	
10.	Closed loop transfer function	Yes	
11.	Determination of Signal flow graphs	Yes	
12.	Mason's gain formula with Examples	Yes	
UNIT II	TIME RESPONSE ANALYSIS		
13.	First Order Systems	Yes	
14.	Impulse and Step Response analysis	Yes	
15.	Second Order system Analysis	Yes	
16.	Steady state error	Yes	
17.	Steady state error with input signal	Yes	[T1] Chapter -2,
18.	Error Coefficients	Yes	[R1]Chapter-4,5
19.	Generalized error series	Yes	
20.	Principle of PI, PD Compensation	Yes	
21.	PID Compensation	Yes	
22.	Servo Motor,	Yes	
23.	Synchros & Stepper Motor	Yes	
24.	analysis using Matlab	Yes	
UNIT III	STABILITY IN TIME DOMAIN		
25.	Stability Analysis	Yes	

26.	Definition of Stability analysis	Yes	
27.	Location of poles on s-Plane for Stability	Yes	
28.	Routh - Hurwitz Criterion	Yes	
29.	Construction of Routh array	Yes	[T1] Chapter -3,
30.	Routh array Cases	Yes	[R2]Chapter-,5
31.	Root locus Method	Yes	
32.	Construction of root locus diagrams.	Yes	
33.	Root locus problems	Yes	
34.	Stability Study	Yes	
35.	Application of root locus diagram.	Yes	
36.	Analysis using Matlab	Yes	
UNIT IV	STABILITY IN FREQUENCY DOMAIN		
37.	Frequency response analysis	Yes	
38.	Frequency domain specifications	Yes	
39.	Polar plot,	Yes	
40.	Bode's Plot Magnitude & Phase plot	Yes	[T1] Chapter -4,
41.	Constant M and N Circles, Nichol's Chart	Yes	[R2]Chapter-6,7
42.	Nyquist Stability Criterion	Yes	
43.	Relative Stability	Yes	
44.	Gain Margin and Phase margin	Yes	
45.	Determination from Polar plot	Yes	
46.	Use of Nichol's Chart relative stability	Yes	
47.	Bandwidth, Resonance peak resonance frequency.	Yes	
48.	Analysis using Matlab	Yes	
UNIT V	COMPENSATION TECHNIQUES		
49.	Cascade and feedback compensation	Yes	
50.	Lag Compensation	Yes	
51.	Design of Lag Compensation Using Bode plots	Yes	
52.	Design of Lag Compensation Using root locus	Yes	[T1] Chapter -5,
53.	Lead Compensation	Yes	[R3]Chapter-8,7
54.	Design of Lead Compensation Using Bode plots	Yes	
55.	Design of Lead Compensation Using root locus	Yes	
56.	Lag- lead Compensation	Yes	
57.	Design of Lag-Lead Compensation Using Bode plots	Yes	
58.	Design of Lag-Lead Compensation Using root locus	Yes	
59.	Design of Cascade Compensators	Yes	
60.	Using Bode's Plot	Yes	

Teaching Strategies

The teaching in this course aims at establishing a good fundamental understanding of the areas covered using:

- Formal face-to-face lectures
- Tutorials, which allow for exercises in problem solving and allow time for students to resolve problems in understanding of lecture material.
- Small periodic quizzes, to enable you to assess your understanding of the concepts.

Evaluation Strategies

Cycle Test – I	-	5%
Cycle Test – II	-	5%
Model Test	-	10%
Assignment /Seminar/online test/quiz	-	5%
Attendance	-	5%
Final exam	-	70%

Prepared by: Ms.B.Kalaiselvi, Asst. Professor.

Dated :

Addendum

ABET Outcomes expected of graduates of B.Tech / ECE / program by the time that they graduate:

a. An ability to apply knowledge of mathematics, science, and engineering

b. An ability to design and conduct experiments, as well as to analyze and interpret data

c. An ability to design a hardware and software system, component, or process to meet desired needs within realistic constraints

such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability

- d. An ability to function on multidisciplinary teams
- e. An ability to identify, formulate, and solve engineering problems
- f. An understanding of professional and ethical responsibility
- g. An ability to communicate effectively

h. The broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context

i. A recognition of the need for, and an ability to engage in life-long learning

j. A knowledge of contemporary issues

k. An ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.

Program Educational Objectives

PEO1: PREPARATION

Electronics Engineering graduates are provided with a strong foundation to passionately apply the fundamental principles of mathematics, science, and engineering knowledge to solve technical problems and also to combine fundamental knowledge of engineering principles with modern techniques to solve realistic, unstructured problems that arise in the field of Engineering and non-engineering efficiently and cost effectively.

PEO2: CORE COMPETENCE

Electronics engineering graduates have proficiency to enhance the skills and experience to apply their engineering knowledge, critical thinking and problem solving abilities in professional engineering practice for a wide variety of technical applications, including the design and usage of modern tools for improvement in the field of Electronics and Communication Engineering.

PEO3: PROFESSIONALISM

Electronics Engineering Graduates will be expected to pursue life-long learning by successfully participating in post graduate or any other professional program for continuous improvement which is a requisite for a successful engineer to become a leader in the work force or educational sector.

PEO4: SKILL

Electronics Engineering Graduates will become skilled in soft skills such as proficiency in many languages, technical communication, verbal, logical, analytical, comprehension, team building, interpersonal relationship, group discussion and leadership ability to become a better professional.

PEO5: ETHICS

Electronics Engineering Graduates are morally boosted to make decisions that are ethical, safe and environmentally-responsible and also to innovate continuously for societal improvement.

Course Teacher	Signature
MS.B.KALAISELVI	
MR.R.MOHANRAJ	

Course Coordinator

HOD/ECE